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Whispering gallery mode (WGM) microbubble cavities are a versatile optofluidic sensing platform owing to their
hollow core geometry. To increase the light–matter interaction and, thereby, achieve higher sensitivity, thin-
walled microbubbles are desirable. However, a lack of knowledge about the precise geometry of hollow micro-
bubbles prevents us from having an accurate theoretical model to describe the WGMs and their response to
external stimuli. In this work, we provide a complete characterization of the wall structure of a microbubble
and propose a theoretical model for the WGMs in this thin-walled microcavity based on the optical waveguide
approach. Structural characterization of the wavelength-scale wall is enabled by focused ion beam milling
and scanning electron microscopy imaging. The proposed theoretical model is verified by finite element
method simulations. Our approach can readily be extended to other low-dimensional micro-/nanophotonic
structures. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.495072

1. INTRODUCTION

Optical microcavities supporting whispering gallery modes
(WGMs) have been investigated intensively in the past two
decades [1,2] due to their ultrahigh quality factor (Q-factor),
which makes them suitable for various optical applications
ranging from cavity quantum electrodynamics [3–7] to la-
bel-free optical detection [8–12]. Compared with the widely
used WGM microcavity geometries such as microspheres
[13,14], microtoroids [15], and microrings [16], microbubble
cavities or microbubbles [17–20] have the advantage of a hol-
low core and can be used as optofluidic devices in an all-fiber
manner [21–25]. Moreover, the resultant thin-walled structure
of microbubbles provides us with new degrees of freedom, such
as the thickness of the wall and its variation along the cavity
axis. These allow us to engineer properties related to WGMs
such as mode field distribution, mode dispersion, and mode
spectrum. Such engineered WGMs are particularly useful for
various nonlinear optical processes, for example, four-wave
parametric oscillation and frequency comb generation [26–29].
Therefore, an accurate determination of the geometry of a mi-
crobubble to precisely characterize its WGMs is an important
prerequisite for practical applications of such cavities.

Several methods to determine the thin-walled structure of
microbubble cavities in a non-destructive way have already
been reported. Bright-field microscopy is probably the simplest

approach for measuring the diameter of a microbubble [30],
but the low image contrast at a reasonable field of view excludes
it as an effective way for a wall thickness measurement.
Confocal microscopy has been used to measure the wall thick-
ness of microbubble cavities [31]; however, the image resolu-
tion limits the accuracy of the measured thickness to half a
wavelength. Obtaining the structural information of the micro-
bubble by inferring its response to a certain stimulus seems to
be a non-destructive method for the determination of wall
thickness. For example, microbubble wall thickness was mea-
sured based on the internal aerostatic pressure sensing method
with a measurement uncertainty on the submicron scale [32].
Nonetheless, such a method is not ideal as it requires precise
knowledge of the structural information beforehand, and it also
assumes a constant wall thickness along the cavity axis.
Currently, the only reliable method for studying the wall struc-
ture of a microbubble is a destructive approach that involves
breaking the microbubble and then measuring its cross-section
using, for example, scanning electron microscopy (SEM)
[26,33,34]. However, a constant wall thickness along the cavity
axis is generally assumed. A fully systematic study on the micro-
bubble wall structure is yet to be carried out.

In this work, we fully characterize the wall structure of a
microbubble cavity using focused ion beam (FIB) milling
and SEM imaging. Both the wall thickness and its variation
along the cavity axis are obtained, thus enabling us to precisely
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model the microbubble geometry. Considering the wavelength-
scale wall thickness, a theoretical model based on optical
waveguide theory is proposed to describe the WGMs in the
microbubble cavity. Finite element method simulations are per-
formed to verify the validity of the proposed theoretical model.
Our results will benefit not only the development of microbub-
ble cavities but also the exploration of other low-dimensional
micro-/nano-photonic structures.

2. EXPERIMENTAL RESULTS

Silica microbubbles were fabricated as described previously
[33]: a fused silica capillary (360-μm outer diameter and
250-μm inner diameter) was tapered down via a heat-and-pull
process using a CO2 laser, resulting in a microcapillary waist.
By filling the capillary with compressed gas and increasing the
CO2 laser power, microbubbles were produced from the micro-
capillary. The wall structure of a microbubble (with a thin Au
layer coating) at the microcapillary waist was determined by
means of FIB milling and SEM imaging (FEI Helios G3
UC); see Fig. 1. Due to the high imaging resolution of both
the SEM and FIB, the microbubble’s wall structure was clearly
visible. The largest diameter was around 64 μm at the bubble
center, where the wall thickness was the smallest (∼0.85 μm).
The bubble diameter gradually decreased, following a Gaussian
profile, down to around 28 μm at the support stem, where the
wall was thickest at ∼2.60 μm. With this structural informa-
tion, the mode structure of the thin-walled microbubble could
be fully determined by either theoretical models or numerical
simulations, as shown below.

Wall thickness is a crucial parameter to measure the perfor-
mance of microbubble-based optical sensors [33]. However,
due to the lack of an efficient approach to fully characterize
the wall structure, geometrical approaches [30,31,35,36] have
widely been used to estimate the wall thickness. These models

are based on two assumptions, i.e., constant wall thickness and
mass conservation. The first assumption is meaningful when
making order-of-magnitude estimates. The second assumption
can be split into the following two scenarios: area conservation
or volume conservation. In the first case, the microbubble is
considered to be the result of cylindrical expansion of a capil-
lary. The cross section of the capillary is a ring with an area of
π�d∕2�2 − π�d∕2 − t�2 ≈ πd t, where d is the bubble’s outer
diameter and t its wall thickness (t ≪ d ). The conserved area
leads to a reciprocal linear relationship between d and t,
i.e., t � c1∕d , with coefficient c1. Similarly, for the second
case, the microbubble can be viewed as the result of spherical
expansion of a spherical bubble with the same diameter as the
capillary. Since the volume of the spherical bubble is
�4∕3�π�d∕2�3 − �4∕3�π�d∕2 − t�3 ≈ πd 2t, a reciprocal quad-
ratic relation of t � c2∕d 2 is obtained with c2 as a coefficient.
It is generally believed that the cylindrical expansion gives an
over-estimation of wall thickness, therefore the upper limit for
the measured thickness, while the lower limit is obtained from
spherical expansion [31].

Figure 1(e) shows the t versus d relationship for the thin-
walled microbubble. The wall thickness of the microbubble
varies along the bubble axis, clearly showing that it does not
have a constant wall thickness, invalidating the first assumption
mentioned above. The second assumption is also invalid be-
cause the relationship between t and d is neither reciprocal lin-
ear nor reciprocal quadratic. Nevertheless, around the center of
the thin-walled microbubble (�40 μm from the microbubble
center), a reciprocal linear relationship between t and d is sat-
isfied. We attribute these seemingly unusual results to the fact
that only the center of the microbubble was melted and fully
expanded, while the portions near the support stems experi-
enced lower temperatures and were unable to fully expand.
These findings demonstrate the importance of developing
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Fig. 1. Structural characterization of a thin-walled microbubble by FIB milling and SEM imaging. (a) The microbubble’s support stem on the left
side was initially removed through FIB milling, while half of the support stem on the right side was cut, creating a gap. (b) A third FIB milling was
conducted from the center of the left side towards the center of the gap on the right side, resulting in the removal of half of the microbubble. (c) After
rotating the microbubble’s left half, the wall structure of the microbubble is clearly visible under SEM imaging. (d) Due to the high SEM imaging
resolution, the wall thickness variation along the cavity axis can be determined with accuracy down to the nanometer scale (upper panel). To describe
such a wall structure, Gaussian profiles were used to fit the outer and inner boundaries of the microbubble (lower panel). (e) The dependence of the
wall thickness t on the outer diameter d of the thin-walled microbubble is shown. A reciprocal linear relation is satisfied near the center of the
microbubble at larger outer diameters.
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an efficient approach for characterizing the wall structure of
microbubbles.

3. THEORETICAL MODEL

As a type of optical bottle microresonator (BMR), light in mi-
crobubbles is trapped in the cross-sectional plane, circulating
around the bubble axis, while confined axially, bouncing back
and forth between two turning points known as caustics; this is
similar to the way charged particles are trapped in magnetic
bottles [37]. Such a confinement of light in three dimensions
results in the quantization of optical fields into a series of op-
tical modes. With the structural information [Fig. 2(a)] ob-
tained from experimental measurements, the mode structure
of the thin-walled microbubble can be theoretically modeled
by simplifying Maxwell’s equations.

For azimuthally and axially symmetric microbubbles made
of isotropic and homogeneous nonmagnetic dielectric materi-
als, optical spin–orbit coupling is absent [38,39]. Furthermore,
most of these microbubbles have a relatively small diameter
variation along the axial direction [see Fig. 2(a)]. Therefore,

the two sets of polarization modes can be well separated: trans-
verse electric (TE) modes with nonzero axial electric fields and
the equivalent transverse magnetic (TM) modes with nonzero
axial magnetic fields. Since TE modes preferentially exist in
thin-walled microbubbles, only will they be considered in
the subsequent analysis. The Helmholtz equation for the non-
zero axial electric field Ez of TE modes reads

∇2Ez�r� � k2εr�r�Ez�r� � 0: (1)

Here, k � ω∕c is the wave vector, ω is the angular frequency,
c � 1∕ ffiffiffiffiffiffiffiffiffi

ε0μ0
p

is the speed of light, ε0 (μ0) is the permittivity
(permeability) in vacuum, and r is the position vector. The rel-
ative permittivity εr � ε∕ε0, where ε is the permittivity of a
material. The relative permeability μr of nonmagnetic materials
in the visible and infrared spectral ranges is close to unity, and
one may set the material’s permeability μ � μ0.

The scalar Helmholtz equation for Ez is a three-dimensional
(3D) partial differential equation. It can be further simplified
by the method of separation of variables in the cylindrical co-
ordinates �ρ,φ, z�, defined in Fig. 2(a). To this end, Ez can be
expressed in the separable form
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Fig. 2. Theoretical model of a thin-walled microbubble. (a) Reconstructed 3D geometry of the microbubble from the SEM images shown in
Fig. 1. Due to the geometrical symmetries, the electric field distribution of WGMs in the microbubble can be calculated by solving the three coupled
differential equations, Eqs. (3)–(5). Three mode indices, i.e., n, m, and l , are resolved in the end to identify the WGMs, in addition to their
polarization state (either TM or TE). (b) Radial field distribution. Owing to the wavelength-scale wall thickness, only the fundamental radial
mode with n � 1 is considered. The inset illustrates the physical meaning of the effective permittivity εeff. (c) Axial field distribution. The qua-
sipotential of the microbubble forms a quantum well—due mainly to diameter variation—that confines the axial motion such that different axial
modes emerge. (d) Azimuthal field distribution. Only a small portion of the azimuthal field is shown for better visibility. (e) Dependence of εeff on
wall thickness. (f ) Illusory example showing a quantum-barrier-like quasipotential (lower panel) formed solely by wall thickness variation (upper
panel) where a constant outer diameter was used. (g) Dependence of kcirc on the outer diameter.
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Ez�ρ,φ, z� � P�ρ�Φ�φ�Ψ�z�, (2)

where P�ρ�,Φ�φ�, andΨ�z� are the radial, azimuthal, and axial
field components, respectively. Substituting Eq. (2) into
Eq. (1), three ordinary differential equations for the respective
field components are obtained:�

ρ2
d2

dρ2
� ρ

d

dρ
� εr,z�ρ�ρ2

�
P�ρ� � εeff ,zP�ρ�, (3)

d2

dφ2 Φ�φ� � −k2circ,zεeff ,zΦ�φ�, (4)

�
−

1

εeff ,z

d2

dz2
� k2circ,z

�
Ψ�z� � k2Ψ�z�, (5)

which are coupled via two coupling constants εeff and kcirc.
Here, εeff couples the dynamics of the radial and circular com-
ponents of light propagation, while kcirc couples the dynamics
of the lateral and axial components of light propagation. In the
end, the discrete spectrum ω � kc can be obtained by solving
these three ordinary differential equations, Eqs. (3)–(5).

The general solution of Eq. (3) consists of a linear combi-
nation of Bessel functions of the first and second kinds. Their
coefficients are determined by matching the wall boundary
condition [Fig. 2(b)]. The Bessel functions, and therefore
P�ρ�, look like oscillating sine or cosine functions that decay
proportionally to 1∕ ffiffiffi

ρ
p

. Different radial modes can be
distinguished by the number of “peaks” in the P�ρ�, with each
mode labeled by a unique radial mode index n � 1, 2, ….
Equation (3) quantifies the effect of wall thickness on these
radial modes by using an effective permittivity εeff, i.e., the first
coupling constant, which measures the degree of light confine-
ment by the wall [see the inset of Fig. 2(b)]. Since the diameter
of microbubbles is typically in the range of a few tens of
micrometers, the weakly curved condition is satisfied, and
the microbubble wall can be treated as a slab waveguide.
Then, εeff can be easily found via the transcendental equation
based on the well-established optical waveguide theory [40]:

tan�κt� � κγair � κγcore
κ2 − γairγcore

, (6)

where γ2air � k2εeff − k2εair, γ2core � k2εeff − k2εcore, κ2 �
k2εr − k2εeff , with εair and εcore the relative permittivities of
the surrounding air and the microbubble’s core material, re-
spectively. Figure 2(e) shows the calculated εeff as a function
of wall thickness at a few wavelengths of interest. It is clear that
the microbubble wall plays a crucial role when its thickness is
close to the propagating wavelength. In other words, εeff drops
rapidly once the wall thickness is less than the wavelength, as is
the case for most microbubble cavities.

The general solution of Eq. (4) is Φ�φ� � A exp��i�βφ�
φ0�� with amplitude A and initial phase φ0, where
β � kcirc

ffiffiffiffiffiffi
εeff

p
can be called the propagation constant. Note

that “�” corresponds to the clockwise (CW) and counterclock-
wise (CCW) modes [9]. To have a stable optical field distribu-
tion, the solution must satisfy the periodic boundary condition
[Fig. 2(d)] ffiffiffiffiffiffiffiffiffi

εeff ,z
p

πd � mλcirc,z , (7)

where λcirc � 2π∕kcirc is the wavelength in the cross-sectional
plane. On the one hand, it leads to WGMs identified by the

azimuthal mode index m � 0, 1, 2, …. On the other hand, it
determines the kcirc in this cross-section, i.e., the second cou-
pling constant. Figure 2(g) shows the dependence of kcirc on the
outer diameter. Generally speaking, the smaller the outer diam-
eter, the stronger the azimuthal optical confinement.

The last equation, Eq. (5), describes the axial dynamics of
WGMs. It is a quasi-Schrödinger equation with the quasipotential

V eff �z� �
ℏc
e
kcirc,z , (8)

where the elementary charge e is used to scale the quasipotential
in eV. Although not explicitly mentioned in the literature, the
quasipotential in most microbubble cavities forms a quantum
well, which confines the axial motion of WGMs [Fig. 2(c)].
The quantization of the axial motion in the quantum well re-
sults in different axial modes indicated by the axial mode index
l � 1, 2, …. However, due to the lack of analytical solutions
for most quantum well quasipotentials, the finite difference
method is widely employed as a reliable numerical approxima-
tion technique to solve the quasi-Schrödinger equation. In the
finite difference method, this second-order differential equation
is discretized into N linear equations:

−
1

εeff ,i

Ψi�1 − 2Ψi �Ψi−1

Δz2
� k2circ,iΨi � k2Ψi (9)

for i � 1, 2, …, N , where Δz represents the step size. These
N linear equations form an N × N matrix equation that can be
easily solved using the diagonalization method. The eigenvalues
of the matrix equation are the resonance frequencies of the axial
modes, while the corresponding eigenvectors are the axial field
distributions [40]. It is worth noting that there exist axial po-
tentials that have analytical solutions, such as the harmonic po-
tential [41]; nevertheless, it is a significant challenge to fabricate
a microbubble with the desired potential.

The customizability of their axial modes distinguishes mi-
crobottle cavities from microsphere and microtoroid cavities
[42]. As one type of microbottle cavity, microbubbles provide
a new degree of freedom, i.e., the wall structure, in tailoring
axial modes. This becomes clearer with the theoretical model
presented here: both wall thickness and its variation contribute
to the axial quasipotential in Eq. (8) by determining εeff
through Eq. (6) and subsequently influencing the value of kcirc
as described in Eq. (7). Figure 2(f ) shows an example where a
microbubble can provide a quantum barrier for the axial optical
motion if the quasipotential is formed solely by the wall struc-
ture. This is similar to the axial mode engineering in rolled-up
microbottle cavities [40,43–46].

4. SIMULATION VERIFICATION

The measured 3D structure of the thin-walled microbubble
[Fig. 2(a)] allows us to characterize the shape with great accu-
racy. Therefore, a series of simulations based on the finite
element method was carried out, and the results are summa-
rized in Fig. 3. These simulation results were used to verify the
validity of the proposed theoretical model.

Figure 3(a) shows the resonant wavelengths of WGMs with
m ranging from 165 to 175 (l � 1 and n � 1). The calculated
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values (λTHE) using the aforementioned theoretical model agree
with the simulation results (λSIM) over a wide spectral range.
For example, the mean value of the relative deviation
j�λTHE − λSIM�∕λSIMj is only 0.09%. Such good agreement
confirms the validity of the proposed theoretical model based
on the optical waveguide approximation. This deepens our
understanding of the underlying physics and facilitates the de-
sign for device applications using thin-walled microbubble
cavities.

The comparison for the axial modes is made in Fig. 3(b) for
WGMs with m � 170 and n � 1. Very good agreement be-
tween the theoretical model and simulations is also obtained.
This confirms the effectiveness of treating the WGM axial dy-
namics in the same way as the dynamics of a particle in a quan-
tum well. By doing so, thin-walled microbubble cavities
become a reliable experimental platform to test quantum me-
chanics. On the other hand, quantum theory can be used to
engineer axial modes.

5. DISCUSSION

First, the most intriguing finding in this work is the feasibility
of using the FIB milling approach to explore the internal struc-
ture of a microbubble cavity. No special treatment was required
for the FIB milling, and there was no observable deformation
during or after the milling process. Additionally, there was no
noticeable charging effect during the SEM imaging after mill-
ing. These observations demonstrate that it is a viable way for
characterizing the actual structure of microbubbles, enabling us
to go beyond oversimplified approximations such as treating
them as uniform spheres.

Second, the proposed waveguide-based theoretical model
for thin-walled microbubble cavities, after verification through
simulations, suggests that treating them as 3D ring waveguide
resonators is reasonable. This implies that design strategies and
methodologies from on-chip photonics could potentially be ap-
plied to microbubble cavities. Nonetheless, one must also be

aware of the limitations of this waveguide model. For example,
when considering liquid-core microbubble cavities, the wave-
guide approximation may not be applicable to modes with a
significant radial field extension.

Last but not least, the wall structure of a microbubble cavity
is explicitly revealed in this work, and wall thickness variation is
clearly visible. Therefore, for applications involving various ax-
ial modes across a broad spectral range, such as Kerr frequency
combs, the thickness variation should be accounted for.
However, for certain applications, such as single nanoparticle
sensing, a constant thickness approximation for the bubble
range of �20 μm from the center should be acceptable when
using low-order axial modes.

6. CONCLUSION

We have demonstrated an efficient way to fully characterize the
wall structure of a microbubble cavity. The 3D geometry of the
microbubble was reconstructed based on FIB milling and SEM
imaging. Owing to the wavelength-scale wall thickness, a theo-
retical model based on the optical waveguide approximation
has been proposed to describe the WGMs in the thin-walled
microbubble cavity. Simulations have also been performed us-
ing the fabricated microbubble structure. Very good agreement
between the proposed theoretical model and simulations has
been obtained, verifying the validity of the proposed theory.
The demonstrated characterization and modeling approaches
are readily adaptable for other wavelength-scaled photonic
devices.
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